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ABSTRACT

We consider the linear stability of plane Couette flow composed of two immiscible

fluids in layers. The fluids have different viscosities but the same densities. It is known that

the short wavelength asymptotics of the interfacial mode for the bounded and unbounded

problems are identical. In this paper, we show that there is a critical Reynolds number

above which the interfacial modes of the unbounded problem are approximated by those

of the bounded problem for wavelengths outside the asymptotic short wavelength range.

A full linear analysis reveals unstable situations missed out by the long and short

wavelength asymptotic analyses but which have comparable orders of magnitudes for the

growth rates. The inclusion of a density difference as well as a viscosity difference is p .

discussed. In particular, the arrangement with the heavier fluid on top can be linearly

stable in the presence of gravity if the viscosity stratification, volume ratio, surface tension,
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SIGNIFICANCE AND EXPLANATION

Shearing flows composed of several superposed liquid layers are frequently encountered

in modern coating technology. The stability of a multi-layered flow is especially important

in the precision coating of a color film which can consist of many layers. The stability of

thin layers discussed in this paper is relevant to flows in the lubrication industry.
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INSTABILITY AT THE INTERFACE BETWEEN TWO
SHEARING FLUIDS IN A CHANNEL

Yuriko Renardy 0

§1. INTRODUCTION

Examples of shearing flows that are composed of a number of different immiscible fluids

include the pipeline transport of viscous oils with the addition of water, the production

of bicomponent fibers, the coating of color films, and lubrication. Among these examples

are situations where the fluids have very different viscosities but similar densities and the

speeds are slow. Hence, we focus on the role of viscosity stratification in the linear stability..

analysis of plane Couette flow of two layers of fluids at low Reynolds numbers.

Two immiscible fluids of given viscosities and densities are confined between infinite

parallel plates. The upper plate moves at a given speed in its own plane. In each fluid, the

Navier-Stokes equations and incompressibility hold. At the interface, the kinematic free

surface condition holds, velocity and shear stress are continuous, and the jump in normal

stress is balanced by surface tension. These equations exhibit non-uniqueness since the

two fluids can be arranged in any number of horizontal layers with flat interfaces. We

choose to consider stability of the arrangement in two layers. Dimensionless parameters

are a Reynolds number, a viscosity ratio, a depth ratio and a surface tension parameter.

In the presence of a density difference, we have a density ratio and a Froude number. We

use a normal mode analysis, in which disturbances are periodic in the horizontal direction

and the response depends exponentially on time. The linear stability analysis is set up as

an eigenvalue problem, in which the eigenvalue is the coefficient of time in the exponential

dependence of the response, and all the other parameters are given.

It is known that plane Couette flow of one fluid is linearly stable at all Reynolds

numbers. If a flat horizontal interface is added to the flow with one fluid, the interfacial

conditions give rise to an interfacial mode that is neutrally stable, as well as the eigenvalues

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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of the one-fluid problem. If the fluids separated by the interface have different mechanical

and thermal properties, then the interfacial mode can be unstable even at low Reynolds

numbers, and this instability may manifest itself in a wavy interface.

Yih1 considered the long wavelength asymptotics for two-layered plane Couette and

Poiseuille flows for fluids of identical densities. He found that, depending on the viscosity

ratio and the volume ratio, the flow can be unstable at any Reynolds number. Yih's

asymptotic method has been applied to the linear stability of other multi-component flows,

for example, pipe flow with one fluid encapsulating a second fluid 3 , layered flow down an
4

inclined plane 4, and three-layered Couette and Poiseuille flows6.

The asymptotic analysis of the interfacial modes for short wavelengths was given

by Hooper & Boyd2 . They analyzed unbounded Couette flow of two fluids. The short

wavelength limit of the interfacial modes for this coincides with the short wavelength limit

of the interfacial modes of more general parallel shear flows of two fluids because the

effect of boundaries turns out to be negligible in that limit. Their asymptotic method has

been applied to the flow of two fluids between concentric cylinders with the outer cylinder

fixed and the inner cylinder rotating7 . The asymptotic results have been correlated with

numerical studies of the full linear stability problem for the pipe flow8 and the flow between

cylinders7 . If surface tension is absent, discontinuously viscous stratified flows are unstable

to short wavelength disturbances. These instabilities are suppressed by surface tension.

This is contrary to expectation because in flows of one fluid, short waves are suppressed

by viscosity. Stability in the short-wave limit is governed to a large extent by surface

tension, and to a lesser extent by the density and viscosity differences. There has been a

conjecture8 that these short-wave instabilities may be a mechanism for the formation of

emulsions. The behavior of small emulsions have often been described by two-phase flow

equations that model the emulsion and the surrounding fluid as one material9 . On the

other hand, relatively large emulsions have been observed and sustained by the shearing

motion of two different fluids' ° . These appear to have a typical wavelength but we show

2. - .. o.,
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in §2 that the linear model does not correlate with the experimentally observed length

scales' ° . Further work is required to investigate the formation of emulsions, from fingering -.

instabilities at the interface and cusping, which is a three-dimensional nonlinear time-

dependent free-surface phenomenon.

There has been much interest in the short wavelength instabilities from both the theo-

retical and experimental points of view. Hinch 1 ' has remarked on the practical difficulties

of observing the asymptotic short wavelength instabilities by estimating the orders of mag- -:

nitude which the mechanical properties of the fluids ought to satisfy in order to exhibit I

such instabilities. In practice, on top of these restrictions, the dimensions of the bound-

aries is important. We discuss this further in §2. Unbounded Couette flow has only one

length scale, namely the length scale of diffusion of momentum, which is derived from the

viscosity and velocity gradient in one of the fluids. The presence of boundaries introduces

a second length scale, the distance between the boundaries. A Reynolds number can be

defined using the scale of boundary separation, velocity scale, and viscosity of one of the

fluids. This Reynolds number represents the ratio of squares of the two length scales.

As the Reynolds number increases, the range of wavelengths over which the unbounded

problem approximates the bounded problem increases from the short wave limit to longer I
waves.

In §2, we show that a full linear stability calculation reveals a range of instabilities

which is in neither the short nor long wavelength limit, but which has comparable growth

rates. This band of instabilities occurs for relatively small wavenumbers, but are not long

waves because for a fixed Reynolds number, there is stability in the limit of long waves.

Hence, the behavior for wavelengths that are neither long nor short cannot simply be -

interpolated from the asymptotics.

In §3, we include a density stratification and gravity as well as a viscosity stratification.

We examine the possibility of a "lubrication stabilization" 7 . This phenomenon occurs in I

the presence of a small amount of the less viscous fluid and a large amount of the more

3



viscous fluid. There is a tendency for the less viscous fluid to "lubricate" the more viscous

fluid and to protect it from shearing. The stability of such a configuration may be strong

enough to overcome an adverse density difference. This stabilizing mechanism is absent

if the basic flowfield has no shearing' 2 , such as in rigid-body rotation of two immiscible

fluids.

4S
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§2. EMULSIONS, SHORT-WAVE INSTABILITIES AND THE PRESENCE OF

BOUNDARIES.

Two immiscible fluids of density p lie in layers between infinite parallel plates, a

distance V apart. The upper plate is moving with speed U. Fluids I and 2 refer to

the lower and upper fluids respectively. The fluids have viscosities 11,, i = 1,2. We

define a viscosity ratio m = A1/102. The velocity, distance, time and pressure are made

dimensionless with respect to U, I", I'/U and pU 2 respectively. The Reynolds number in

each fluid is Rej = Ul/I/i where Lei is the kinematic viscosity of fluid i. Fig. 1 displays

the problem in dimensionless form.

12 Fluid 2

Fluid I

Fig.1

Geometry of problem in dimensionless variables.
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In each fluid, the Navier-Stokes equations and incompressibility hold. The boundary

conditions are the no-slip conditions. At the interface, the kinematic free-surface condition

holds, velocity and shear stress are continuous, and the difference in the normal stress is

balanced by surface tension. These equations are satisfied by a flat interface at y -11 and

a dimensionless velocity (U1(y), 0) given by

U for O<y LI (1)Uy)=11 + M12 - -.

Tn(Y - 1)+1 for 1<y<l.

11 + m1 2

We consider the linear stability of this basic flowfield by superposing a small disturbance

which is proportional to exp(iax + at), to the velocity and interface position.

We denote the perturbations to the velocity and interface position by (u, v) and h.

respectively. We refer to Yih (1967) for the derivation of the following equations. We

obtain, in each fluid,

Re,(o + iaUl(Y))(vYY - 0'v) 2 V 2 (v Y - a 2v). (2)

The interface conditions, linearized at y 11, yield:

a - m)Ii
v = h(o + iaUi(1)), vD- 0, ilvyl + 0'+ml2

-Vy V2yy + a 2 v(m - 1) = 0, (3)

aRe2jvy -Tha 4 + MVmyyy- Vy - m(3a 2 + RejiaU(1))viy

+(3a2 + Re 2iaU(li))v2 y + Re2 icV 1 (1 +M2)'

where subscript i refers to Fluid i, our surface tension parameter T is (the surface ten-

sion coefficient)/( 2U), and Joj denotes 0, - o2. For our numerical results, we discretize

the equations in the y-direction by using a spectral method based on an expansion in

Chebyschev polynomials (Orszag 1971).

6
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In Joseph, Nguyen & Beavers (1984), Figs. 15(c), 16 and 19 - 23 show that relatively

large emulsions can be present in shearing flows of two fluids. These bubbles may be called

"dynamic" emulsions since they are dynamically maintained by the shearing and disappear

when the apparatus is stopped (private communication from D. D. Joseph). There are also

smaller bubbles (Drew 1983) which stay in the flow after the apparatus is stopped. The 0

larger bubbles appear to have a typical wavelength, which tempts one to explain their size

by the following simple-minded argument. Suppose we model these flows as locally plane

Couette flows. The linear theory can yield an unstable range of medium wavelengths A,

say As _< A < AL, depending on the volume ratio, viscosity ratio and surface tension.

The volume ratio and viscosity ratio determine the stability of long waves'; suppose these

parameters are such as to make the waves stable for A > AL. Surface tension sets a lower

bound A on the unstable wavelengths'. Is there any agreement between the wavelengths

AS <A < AL and the size of the bubbles? We find that AS and AL both turn out to

be too large compared with bubble diameters, or that the linear theory predicts stability.

This indicates that the short wavelength instability found by Hooper & Boyd (1983) need

not be present to support emulsions. Hence, the dimensions of the boundaries play a

crucial role and the above-referenced flows should not be modelled as plane Couette flows.

In this context, a more relevant mechanism of instability would be the medium to long

wavelength one. For the case of the medium wavelength instability, the Hopf bifurcation

(Renardy, M. & Joseph) to a traveling wave may be unstable in some parameter range.

For the case of long waves in plane Couette and Poiseuille flows, Hooper & Grimshaw

have used the method of multiple scaling to find an amplitude evolution equation for long

wavelength weakly nonlinear waves. For instabilities arising from either the medium or

long wavelengths, a highly nonlinear wavy interface may result, and the tips of the waves

may finger causing bubbles to break off. In this situation, there need be no correlation

between the range of unstable wavelengths in the linear stability analysis and the size of

the bubbles.

7

... . . . . . . . . . . . . ..: . -'.2....... .-.- . .- .- .'. . - .. :.2 '-•. .- . - - .-.-



We next examine the relationship between the problem without boundaries and the

problem with boundaries. In what follows, the subscript HB denotes the variables for the

unbounded problem (see §4 of Hooper & Boyd 1983).

The natural length scale in the unbounded problem is the scale of diffusion of momen-

turn, and for the bounded problem, it is the plate separation. Hence, the dimensionless .. "

wavenumber, surface tension parameter and eigenvalue of the two problems are related by

aHB( he,)1/ 2 = a, SHBm(Rel(11 + m12))- 1/2  T and

-iaHBCHB = (11 + m12)(a + iaU1(li)).

In the short wavelength limit, the interfacial eigenvalues of both problems are identical.

For the flow with boundaries,

D( + Relm(1 - rn) 2  aT
2(1 + m1 2) 2a2 (1 + m) 2(1 +m) as 0 -4 00, (4) ,

keeping all other parameters fixed. The asymptotic formula (4) is useful if the dimensional

wavelength is small compared to both the plate separation (a >> 1) and the length '

scale of diffusion of momentum (aHB >> 1). This often requires a to be very large.

However, the unbounded problem would approximate the bounded problem for a out of this

asymptotic range if the plate separation is large compared with the length scale of diffusion

f momentum, and if the wavelength under consideration is of the order of the latter. In

Fluid 1, the length scale of diffusion of momentum is given by a combination 1"( e, / 

f the velocity gradient UM and the kinematic viscosity. Hence, the ratio of thisf th velcitygradent(1, +Ml2)/-

•elative to plate separation is (1,+,)1/2, and this must be small. This indicates thatRelm ,

,here is a critical Reynolds number, above which the unbounded problem approximates

he bounded problem for waves that are short (with respect to plate separation) but not

hort enough (with respect to diffusion of momentum) to be in the asymptotic range of

'qual ion (4).

The dependence of marginal stability on the Reynolds number for the bounded prob- .

em is illustrated in Fig.2. The viscosity ratio (m 0.5) and volume ratio (11 = 1/3) were

8
-.I
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chosen so that long waves would be stable. The suitable range for these parameters are

found in Figs.2(a) and 2(b) of Yih (1967). The surface tension parameter was chosen so

that we can compare with Fig.3(a) of Hooper & Boyd (1983) for SHB 0.1, from which

we read instability for approximately 0.14 < aHB < 1.3. Physically, Fig.2 can be inter-

preted as keeping the fluid properties (surface tension coefficient, i,, m, p), the volume -

ratio and the velocity gradients fixed, and varying the plate separation. By Re, = 800,

we find a band of instabilities corresponding to the unbounded problem. At this value of

Re I, the value of a at the upper end of the band is not yet in the short-wavelength range -

described by (4). This would be the only band of instabilities if the qualitative features

of the asymptotic and unbounded analyses were simply interpolated to describe the full

linear stability analysis. However, there is another band of instabilities. The dimensional

wavenumbers of this band tend to 0 as the plate separation increases. This is not a long-

wave instability because at each value of the plate separation, there is stability as a - 0.

Maximum growth rates in the two bands of instabilities are of the same order. - -

9

S

* ...... ~ .* ." .



p1.

I.

0.8

0.6i
1.4r -- v**-I

SALEI

1.2- "4

m 0.8-" -'"

'0.6 -

'.0.4-' -

0.0 - L

0 100 200 300 400 500 600 700 800 900 1000
Rel

Fig.2

r ,0.5, I = 1/3, U 12cm/sec, ul = 2p, A2 = 4 p, p = Ig/cm/sec,

. S r .75dyn/cm, (SHB 0.1), U/l fixed at 4.72/sec, Re, = -//Vl.

10

" '. ". .'. '. i .../.'.""." "'.2'-'" "-I"J-'F.'-'-..".......'..""".".".......,-...........""........ "...... ;"": I



§3. INCLUSION OF DENSITY DIFFERENCE AND GRAVITY

We include a density difference and gravity into the linear stability analysis of §2. We

define a Froude number F where F 2 = U' 2/gl, and g is the gravitational acceleration

constant. We denote the density ratio P1/P2 by r. The basic velocity profile remains as

(1). Gravity introduces a pressure gradient in the basic pres: .r- field P given by

49P 1
-y = F2 for O<y<_/1,

- - for Lj _<y .i . (5) S
rF2

This pressure gradient enters into the balance of the normal stress at the interface. The

other interfacial conditions remain as in (3). The normal stress balance requires

cRez(rvly - v2y) = -Tha 4 + mv 1 y, - V2yyy - m(3a 2 + ReuiaU(li))vi-

+(3a 2 + Re2 iaU1(11))V2 y + Re 2iavI (+ + r1 2) + a2 hRe2 F2  (6)

Equation (2) again holds for v. The short wavelength analysis yields (Hooper & Boyd

1983)

or + iaUi(I M(1 - m)(1 - m 2/r)Rel aT m(1 -- 1/r)Rej (7)
2(1 + m) 2a2 (1, + mu) 2  2(1 + m) 2(1 + m)(F 2

as a - oc. Surface tension stabilizes short waves. If Fluid 2 is the heavier, then gravity

would be expected to destabilize long waves. However, if Fluid 1 is very much less viscous

than Fluid 2, and if its depth is small compared to the depth of Fluid 2, then the flow

can be linearly stable even when Fluid 2 is the heavier. The stability of such thin layers is

relevant to the lubrication industry and to coating technology. A similar situation occurs in S

the Taylor flow (Renardy, Y. & Joseph 1985), where two fluids lie between two concentric

cylinders of infir.ite extent with the inner cylinder rotating and the outer cylinder at rest.

The configuration with a thin layer of the less viscous but heavier fluid lying next to the

inner cylinder is found to be linearly stable provided the rotation rate is sufficiently slow.

11 , "

. .. .. ... . ......... °--.. •...... °•.. .. .. ... . -_. .-. -. .- . ---. -
.o-* -.. . . . . . . . ..-. . . . . . . ..•- °•*• •-.- ' ' •. ° , . • , . •*.°"-'..•• .. . • ."-° ."



When the rotation rate is fast, the heavier fluid is thrown out by the centrifugal force but

when the speeds are slow, the viscosity stratification and volume ratio dominate over the

centrifugal force.

Fig.3 is a graph of the growth rate re(a) against the wavenumber a, 0 < a < 1, for -

various depth ratios 11 for plane Couette flow with the heavier fluid on top. We include I0a sufficient amount of surface tension in order to stabilize the short waves. The Froude

number must not be too small or the long waves will be unstable. We choose m small and

r close to 1. For 11 = 0.05 and 0.1, we have stability at all values of a, not just those in
S

Fig.3. For 11 = 0.2 and larger, there is instability at low values of a. The flow is stable

at sufficiently large a for each 11, as can be deduced from equation (7). The Reynolds

numbers in each fluid are low.

1.
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